新闻资讯  快讯  焦点  财经  政策  社会
互 联 网   电商  金融  数据  计算  技巧
生活百科  科技  职场  健康  法律  汽车
手机百科  知识  软件  修理  测评  微信
软件技术  应用  系统  图像  视频  经验
硬件技术  知识  技术  测评  选购  维修
网络技术  硬件  软件  设置  安全  技术
程序开发  语言  移动  数据  开源  百科
安全防护  资讯  黑客  木马  病毒  移动
站长技术  搜索  SEO  推广  媒体  移动
财经百科  股票  知识  理财  财务  金融
教育考试  育儿  小学  高考  考研  留学
您当前的位置:首页 > IT > 数据库 > Redis

为什么单线程的Redis却能支撑高并发?

时间:2019-05-14 09:35:26  来源:  作者:

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

 

为什么单线程的Redis却能支撑高并发?

 

 

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的。

但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回。

这会导致某一文件的 I/O 阻塞导致整个进程无法对其他客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 Read 或者 Write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时。

如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其他的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,我们在编程中使用最多的阻塞模型:

 

为什么单线程的Redis却能支撑高并发?

 

 

阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其他的 I/O 模型,但是在这里都不会具体介绍。阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli)。

这里涉及的就是 I/O 多路复用模型了:

 

为什么单线程的Redis却能支撑高并发?

 

 

在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;

与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)

 

为什么单线程的Redis却能支撑高并发?

 

 

文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、read、write 和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

I/O 多路复用模块

I/O 多路复用模块封装了底层的 select、epoll、avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。

 

为什么单线程的Redis却能支撑高并发?

 

 

在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

static int aeApiCreate(aeEventLoop *eventLoop) 
static int aeApiResize(aeEventLoop *eventLoop, int setsize) 
static void aeApiFree(aeEventLoop *eventLoop) 
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) 
static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask) 
static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) 

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:

// select 
typedef struct aeApiState { 
 fd_set rfds, wfds; 
 fd_set _rfds, _wfds; 
} aeApiState; 
 
// epoll 
typedef struct aeApiState { 
 int epfd; 
 struct epoll_event *events; 
} aeApiState; 

这些上下文信息会存储在 eventLoop 的 void *state 中,不会暴露到上层,只在当前子模块中使用。

封装 Select 函数

Select 可以监控 FD 的可读、可写以及出现错误的情况。在介绍 I/O 多路复用模块如何对 Select 函数封装之前,先来看一下 Select 函数使用的大致流程:

  • 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD。
  • 使用 FD_SET 将 fd 加入 RFDS。
  • 调用 Select 方法监控 RFDS 中的 FD 是否可读。
  • 当 Select 返回时,检查 FD 的状态并完成对应的操作。
int fd = /* file descriptor */ 
 
fd_set rfds; 
FD_ZERO(&rfds); 
FD_SET(fd, &rfds) 
 
for ( ; ; ) { 
 select(fd+1, &rfds, NULL, NULL, NULL); 
 if (FD_ISSET(fd, &rfds)) { 
 /* file descriptor `fd` becomes readable */ 
 } 
} 

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds:

static int aeApiCreate(aeEventLoop *eventLoop) { 
 aeApiState *state = zmalloc(sizeof(aeApiState)); 
 if (!state) return -1; 
 FD_ZERO(&state->rfds); 
 FD_ZERO(&state->wfds); 
 eventLoop->apidata = state; 
 return 0; 
} 

而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) { 
 aeApiState *state = eventLoop->apidata; 
 if (mask & AE_READABLE) FD_SET(fd,&state->rfds); 
 if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds); 
 return 0; 
} 

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired 数组中,并返回事件的个数:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) { 
 aeApiState *state = eventLoop->apidata; 
 int retval, j, numevents = 0; 
 
 memcpy(&state->_rfds,&state->rfds,sizeof(fd_set)); 
 memcpy(&state->_wfds,&state->wfds,sizeof(fd_set)); 
 
 retval = select(eventLoop->maxfd+1, 
 &state->_rfds,&state->_wfds,NULL,tvp); 
 if (retval > 0) { 
 for (j = 0; j <= eventLoop->maxfd; j++) { 
 int mask = 0; 
 aeFileEvent *fe = &eventLoop->events[j]; 
 
 if (fe->mask == AE_NONE) continue; 
 if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds)) 
 mask |= AE_READABLE; 
 if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds)) 
 mask |= AE_WRITABLE; 
 eventLoop->fired[numevents].fd = j; 
 eventLoop->fired[numevents].mask = mask; 
 numevents++; 
 } 
 } 
 return numevents; 
} 

封装 Epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd:

static int aeApiCreate(aeEventLoop *eventLoop) { 
 aeApiState *state = zmalloc(sizeof(aeApiState)); 
 
 if (!state) return -1; 
 state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize); 
 if (!state->events) { 
 zfree(state); 
 return -1; 
 } 
 state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */ 
 if (state->epfd == -1) { 
 zfree(state->events); 
 zfree(state); 
 return -1; 
 } 
 eventLoop->apidata = state; 
 return 0; 
} 

在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) { 
 aeApiState *state = eventLoop->apidata; 
 struct epoll_event ee = {0}; /* avoid valgrind warning */ 
 /* If the fd was already monitored for some event, we need a MOD 
 * operation. Otherwise we need an ADD operation. */ 
 int op = eventLoop->events[fd].mask == AE_NONE ? 
 EPOLL_CTL_ADD : EPOLL_CTL_MOD; 
 
 ee.events = 0; 
 mask |= eventLoop->events[fd].mask; /* Merge old events */ 
 if (mask & AE_READABLE) ee.events |= EPOLLIN; 
 if (mask & AE_WRITABLE) ee.events |= EPOLLOUT; 
 ee.data.fd = fd; 
 if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1; 
 return 0; 
} 

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况。

在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef union epoll_data { 
 void *ptr; 
 int fd; /* 文件描述符 */ 
 uint32_t u32; 
 uint64_t u64; 
} epoll_data_t; 
 
struct epoll_event { 
 uint32_t events; /* Epoll 事件 */ 
 epoll_data_t data; 
}; 

其中保存了发生的 epoll 事件(EPOLLIN、EPOLLOUT、EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) { 
 aeApiState *state = eventLoop->apidata; 
 int retval, numevents = 0; 
 
 retval = epoll_wait(state->epfd,state->events,eventLoop->setsize, 
 tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1); 
 if (retval > 0) { 
 int j; 
 
 numevents = retval; 
 for (j = 0; j < numevents; j++) { 
 int mask = 0; 
 struct epoll_event *e = state->events+j; 
 
 if (e->events & EPOLLIN) mask |= AE_READABLE; 
 if (e->events & EPOLLOUT) mask |= AE_WRITABLE; 
 if (e->events & EPOLLERR) mask |= AE_WRITABLE; 
 if (e->events & EPOLLHUP) mask |= AE_WRITABLE; 
 eventLoop->fired[j].fd = e->data.fd; 
 eventLoop->fired[j].mask = mask; 
 } 
 } 
 return numevents; 
} 

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口。

在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT 
#include "ae_evport.c" 
#else 
 #ifdef HAVE_EPOLL 
 #include "ae_epoll.c" 
 #else 
 #ifdef HAVE_KQUEUE 
 #include "ae_kqueue.c" 
 #else 
 #include "ae_select.c" 
 #endif 
 #endif 
#endif 

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:

 

为什么单线程的Redis却能支撑高并发?

 

 

Redis 会优先选择时间复杂度为 $O(1)$ 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue。

上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 O(n)。

并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

作者:Draveness来源:Draveness|
 

Tags:Redis   点击:()  评论:()
声明:本站部分内容来自互联网,如有任何版权侵犯或其他问题请与我们联系,我们将立即删除或处理。
▌相关评论
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
▌相关推荐
rdb文件是redis实现持久化方式的一种,即通过save或bgsave操作,执行数据备份,生成的.rdb后缀的数据文件。save和bgsave都是调用rdbSave实现备份的,只不过save是阻塞式,bgsave是非...【详细内容】
2019-05-14 09:35:26   点击:(9)  评论:(0)  加入收藏
为什么需要持久化呢?通常情况下redis的数据全部存储在内存中,数据库一旦故障发生重启数据会全部丢失,即使是在redis cluster或者redis sentinel模式下主从同步数据的恢复仍然...【详细内容】
2019-05-14 09:35:26   点击:(4)  评论:(0)  加入收藏
概述redis跟memcached类似,都是内存数据库,不过redis支持数据持久化,也就是说redis可以将内存中的数据同步到磁盘来持久化,以确保redis 的数据安全。不过持久化这块可能比较容易...【详细内容】
2019-05-14 09:35:26   点击:(4)  评论:(0)  加入收藏
一、热点Key问题产生的原因 二、热点Key问题的危害 三、解决方案 四、热点 key 处理 五、方案对比一、热点Key问题产生的原因1、用户消费的数据远大于生产的数据(热卖商品、...【详细内容】
2019-05-14 09:35:26   点击:(4)  评论:(0)  加入收藏
最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容...【详细内容】
2019-05-14 09:35:26   点击:(10)  评论:(0)  加入收藏
通过思维导图整理的Redis的重要知识点一、持久化 二、复制 三、阻塞 四、Redis内存 五、Redis内存优化 六、哨兵 七、缓存设计 ...【详细内容】
2019-05-14 09:35:26   点击:(7)  评论:(0)  加入收藏
Redis 是一个开源的,基于内存的结构化数据存储媒介,可以作为数据库、缓存服务或消息服务使用。Redis 支持多种数据结构,包括字符串、哈希表、链表、集合、有序集合、位图、Hype...【详细内容】
2019-05-14 09:35:26   点击:(3)  评论:(0)  加入收藏
Redis5.0版是Redis产品的重大版本发布,我们先看一下它的最新特点:新的流数据类型(Stream data type) https://redis.io/topics/streams-intro新的 Redis 模块 API:定时器、集群...【详细内容】
2019-05-14 09:35:26   点击:(4)  评论:(0)  加入收藏
Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。...【详细内容】
2019-05-14 09:35:26   点击:(6)  评论:(0)  加入收藏
Redis是一个基于BSD开源的项目,是一个把结构化的数据放在内存中的一个存储系统,你可以把它作为数据库,缓存和消息中间件来使用。同时支持strings,lists,hashes,sets,sorted sets,bitmaps,hyperloglogs和geospatial indexes等数...【详细内容】
2019-05-14 09:35:26   点击:(8)  评论:(0)  加入收藏
推荐资讯
相关文章
栏目更新
栏目热门
'); })();